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 Elements of Information 
Theory 

 By  Thomas M. Cover and 
Joy A. Thomas

 2nd Edition (Wiley)

 Chapters 2, 7, and 8

 1st Edition available at SIIT 
library: Q360 C68 1991
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Recall: Entropy
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 Entropy measures the amount of uncertainty (randomness) 
in a RV.

 Three formulas for calculating entropy:
 [Defn 2.41] Given a pmf of a RV , 
 𝑯 𝑿 ≡ ∑ 𝑝 𝑥 log 𝑝 𝑥 .

 [2.44] Given a probability vector ,

 𝑯 𝐩 ≡ ∑ 𝑝 log 𝑝 .

 [Defn 2.47] Given a number ,
 𝑯 𝒑 ≡ 𝒉𝒃 𝒑 𝑝log 𝑝 1 𝑝 log 1 𝑝

 [2.56] Operational meaning: Entropy of a random variable is 
the average length of its shortest description.

Set 0log 0 0.

binary 
entropy 
function



Recall: Entropy
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 Important Bounds
 

deterministic uniform
 The entropy of a uniform (discrete) random variable:

 The entropy of a Bernoulli random variable:

𝒃
 binary entropy function
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ECS315 vs. ECS452
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ECS315 ECS452

We talked about randomness but we did not 
have a quantity that formally measures the 
amount of randomness.
Back then, we studied variance and 
standard deviation.

We study entropy.

We talked about independence but we did 
not have a quantity that completely measures 
the amount of dependency.
Back then, we studied correlation, 
covariance, and uncorrelated random 
variables.

We study mutual 
information.



Recall: ECS315 2019/1
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Information-Theoretic Quantities

9

Information Diagram



Entropy and Joint Entropy
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 Entropy


 Amount of randomness in 



 Amount of randomness in 

 Joint Entropy

 ,
 Amount of randomness in pair 

 In general, 
 There might be some shared randomness between and .

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌



Conditional Entropies
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𝐻 𝑌 ≡ 𝑞 𝑦 log 𝑞 𝑦
∈

≡ 𝐻 𝐪

𝐻 𝑌|𝑋 𝑥 ≡ 𝐻 𝑌|𝑥 ≡ 𝑄 𝑦|𝑥 log 𝑄 𝑦|𝑥
∈

𝐻 𝑌|𝑋 ≡ 𝑝 𝑥 𝐻 𝑌|𝑥
∈

Amount of randomness in 𝑌

Amount of randomness still 
remained in 𝑌 when we 
know that 𝑋 𝑥.

The average amount of 
randomness still remained in 
𝑌 when we know 𝑋

 𝐐𝑥

𝐻 𝑋, 𝑌 𝐻 𝑋

given a particular value 𝑥

Apply the entropy calculation to a row from the 𝐐 matrix

𝑃 𝑌 𝑦

𝑃 𝑌 𝑦|𝑋 𝑥

average of 𝐻 𝑌|𝑥



Diagrams [Figure 16]
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𝐴 ∩ 𝐵 𝐵\A

𝐴 ∪ 𝐵

𝐴\B

𝐴

𝐵
Venn Diagram

𝐼 𝑋; 𝑌𝐻 𝑋|𝑌 𝐻 𝑌|𝑋

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌
Information Diagram

𝑃 𝐴 ∩ 𝐵 𝑃 𝐵\A

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 ∪ 𝐵

𝑃 𝐴\B

𝐴

𝐵
Probability Diagram



Diagrams [Figure 16]
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𝐼 𝑋; 𝑌𝐻 𝑋|𝑌 𝐻 𝑌|𝑋

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌
Information Diagram

𝑃 𝐴 ∩ 𝐵 𝑃 𝐵\A

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 ∪ 𝐵

𝑃 𝐴\B

𝐴

𝐵
Probability Diagram
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Information Diagram



Toby Berger with Berger plaque
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Raymond Yeung
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 BS, MEng and PhD 
degrees in electrical 
engineering from 
Cornell University 
in 1984, 1985, and 
1988, respectively.

เรย์มอนด์ ยึง
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Raymond Yeung
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 Introduce, for the first time in a 
textbook, 
 analytical theory of I-Measure and 
 geometrically intuitive information 

diagrams
 Establish a one-to-one correspondence 

between Shannon’s information 
measures and set theory.

 Rooted in works by G. D. Hu, by H. 
Dyckman, and by R. Yeung et al.



Diagrams
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𝐼 𝑋; 𝑌𝐻 𝑋|𝑌 𝐻 𝑌|𝑋

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌
Information Diagram

𝑃 𝐴 ∩ 𝐵 𝑃 𝐵\A

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 ∪ 𝐵

𝑃 𝐴\B

𝐴

𝐵
Probability Diagram



Conditional Entropies
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𝐻 𝑌 ≡ 𝑞 𝑦 log 𝑞 𝑦
∈

≡ 𝐻 𝐪

𝐻 𝑌|𝑋 𝑥 ≡ 𝐻 𝑌|𝑥 ≡ 𝑄 𝑦|𝑥 log 𝑄 𝑦|𝑥
∈

𝐻 𝑌|𝑋 ≡ 𝑝 𝑥 𝐻 𝑌|𝑥
∈

Amount of randomness in 𝑌

Amount of randomness still 
remained in 𝑌 when we 
know that 𝑋 𝑥.

The average amount of 
randomness still remained in 
𝑌 when we know 𝑋

 𝐐𝑥

𝐻 𝑌 𝐼 𝑋; 𝑌

𝐻 𝑋, 𝑌 𝐻 𝑋

Apply the entropy calculation to a row from the 𝐐 matrix

𝑃 𝑌 𝑦

𝑃 𝑌 𝑦|𝑋 𝑥given a particular value 𝑥

average of 𝐻 𝑌|𝑥
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Information 
Source

Destination

Message

Recovered 
Message

Source 
Encoder

Channel 
Encoder

Transmitter

Remove 
redundancy

Add systematic 
redundancy

Equivalent
Channel

X: channel input

Y: channel output
Source 
Decoder

Channel 
Decoder
(Detector)

Receiver

Decoded
value

System Model for Section 3.5



Channel Capacity
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Channel Capacity

“Operational”: max rate at which reliable
communication is possible

“Information”: 
𝐩

[bpcu]

Arbitrarily small error 
probability can be achieved.

Shannon [1948] shows that these two quantities are actually the same.

[Section 4.2]

[Section 4.3]



MATLAB
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function H = entropy2s(p)
% ENTROPY2S accepts probability mass function 
% as a row vector, calculate the corresponding 
% entropy in bits.
p=p(find(abs(sort(p)-1)>1e-8)); % Eliminate 1
p=p(find(abs(p)>1e-8)); % Eliminate 0
if length(p)==0

H = 0;
else

H = simplify(-sum(p.*log(p))/log(sym(2)));
end

function I = informations(p,Q)
X = length(p);
q = p*Q;
HY = entropy2s(q);
temp = [];
for i = 1:X

temp = [temp entropy2s(Q(i,:))];
end
HYgX = sum(p.*temp);
I = HY-HYgX;



Capacity calculation for BAC
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Capacity of 0.0918 bits is achieved by  0.5380,  0.4620p 
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[Ex. 4.25, Fig. 18]



Capacity calculation for BAC
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close all; clear all;
syms p0
p = [p0 1-p0];
Q = [1 9; 4 6]/sym(10);

I = simplify(informations(p,Q))

p0o = simplify(solve(diff(I)==0))

po = eval([p0o 1-p0o])

C = simplify(subs(I,p0,p0o))

eval(C)

>> Capacity_Ex_BAC
I =
(log(2/5 - (3*p0)/10)*((3*p0)/10 - 2/5) - log((3*p0)/10 + 3/5)*((3*p0)/10 + 

3/5))/log(2) + (log((5*2^(3/5)*3^(2/5))/6)*(p0 - 1))/log(2) + 

(p0*log((3*3^(4/5))/10))/log(2)

p0o =
(27648*2^(1/3))/109565 - (69984*2^(2/3))/109565 + 135164/109565

po =
0.5376    0.4624

C =
(log((3*3^(4/5))/10)*((27648*2^(1/3))/109565 - (69984*2^(2/3))/109565 + 
135164/109565))/log(2) - (log((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825 + 
16384/547825)*((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825 + 
16384/547825) + log((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 + 
531441/547825)*((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 + 
531441/547825))/log(2) + (log((5*2^(3/5)*3^(2/5))/6)*((27648*2^(1/3))/109565 -
(69984*2^(2/3))/109565 + 25599/109565))/log(2)

ans =
0.0918

0

1

0
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0.1

0.4

0.6

X Y
0.1 0.9
0.4 0.6
 

  
 

Q

[Ex. 4.25, Fig. 18]



Same procedure applied to BSC
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close all; clear all;
syms p0
p = [p0 1-p0];
Q = [6 4; 4 6]/sym(10);

I = simplify(informations(p,Q))

p0o = simplify(solve(diff(I)==0))

po = eval([p0o 1-p0o])

C = simplify(subs(I,p0,p0o))

eval(C)

>> Capacity_Ex_BSC
I =
(log((5*2^(3/5)*3^(2/5))/6)*(p0 - 1))/log(2) -
(p0*log((5*2^(3/5)*3^(2/5))/6))/log(2) - (log(p0/5 + 
2/5)*(p0/5 + 2/5) - log(3/5 - p0/5)*(p0/5 -
3/5))/log(2)
p0o =
1/2
po =

0.5000    0.5000
C =
log((2*2^(2/5)*3^(3/5))/5)/log(2)
ans =

0.0290

0

1

0

1

0.4

0.6

0.4

0.6

X Y
0.6 0.4
0.4 0.6
 

  
 

Q

[Ex. 4.25, Fig. 19]
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Blahut–Arimoto algorithm
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function [ps C] = capacity_blahut(Q)
% Input:     Q  = channel transition probability matrix
% Output:    C  = channel capacity
%            ps = row vector containing pmf that achieves capacity

tl = 1e-8; % tolerance (for the stopping condition)
n = 1000; % max number of iterations (in case the stopping condition 

% is "never" reached") 
nx = size(Q,1); pT = ones(1,nx)/nx; % First, guess uniform X.
for k = 1:n

qT = pT*Q;
% Eliminate the case with 0
% Column-division by qT
temp = Q.*(ones(nx,1)*(1./qT));
%Eliminate the case of 0/0
l2 = log2(temp); 
l2(find(isnan(l2) | (l2==-inf) | (l2==inf)))=0;
logc = (sum(Q.*(l2),2))';
CT = 2.^(logc);
A = log2(sum(pT.*CT)); B = log2(max(CT));
if((B-A)<tl)

break
end
% For the next loop
pT = pT.*CT;     % un-normalized
pT = pT/sum(pT); % normalized
if(k == n)

fprintf('\nNot converge within n loops\n')
end

end
ps = pT;
C = (A+B)/2;

[4.26]



Capacity calculation for BAC: a revisit
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close all; clear all;

Q = [1 9; 4 6]/10;

[ps C] = capacity_blahut(Q)

>> Capacity_Ex_BAC_blahut
ps =

0.5376    0.4624
C =

0.0918

0
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Toby Berger with Berger plaque
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Richard Blahut
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 Former chair of the 
Electrical and 
Computer 
Engineering 
Department at the 
University of Illinois 
at Urbana-Champaign

 Best known for 
Blahut–Arimoto
algorithm 
(Iterative 
Calculation of C)

Toby Berger



Claude E. Shannon Award
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Claude E. Shannon (1972)

David S. Slepian (1974)

Robert M. Fano (1976)

Peter Elias (1977)

Mark S. Pinsker (1978)

Jacob Wolfowitz (1979)

W. Wesley Peterson (1981)

Irving S. Reed (1982)

Robert G. Gallager (1983)

Solomon W. Golomb (1985)

William L. Root (1986)

James L. Massey (1988)

Thomas M. Cover (1990)

Andrew J. Viterbi (1991)

Elwyn R. Berlekamp (1993)

Aaron D. Wyner (1994)

G. David Forney, Jr. (1995)

Imre Csiszár (1996)

Jacob Ziv (1997)

Neil J. A. Sloane (1998)

Tadao Kasami (1999)

Thomas Kailath (2000)

Jack KeilWolf (2001)

Toby Berger (2002)

Lloyd R. Welch (2003)

Robert J. McEliece (2004)

Richard Blahut (2005)
Rudolf Ahlswede (2006)

Sergio Verdu (2007)

Robert M. Gray (2008)

Jorma Rissanen (2009)

Te Sun Han (2010)

Shlomo Shamai (Shitz) (2011)

Abbas El Gamal (2012)

Katalin Marton (2013)

János Körner (2014)

Arthur Robert Calderbank (2015)

Alexander S. Holevo (2016)

David Tse (2017) 

Gottfried Ungerboeck (2018)

Erdal Arıkan (2019)

Charles Bennett (2020)

[ http://www.itsoc.org/honors/claude-e-shannon-award ]
[ https://en.wikipedia.org/wiki/Claude_E._Shannon_Award ]
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Calculating channel capacity
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1. Use (multi-variable) calculus
 standard nonlinear optimization techniques

2. Use Blahut-Arimoto algorithm (MATLAB)

3. Check whether we can match the Q matrix with any 
known special cases.

Remark: Do not assume that the input probabilities will have to 
be uniform to obtain .

 See BAC in Ex. 4.25.



Channel Capacity: Special Cases
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 Channel with Nonoverlapping Outputs (NO2)
 There is only one non-zero element in each column of its 

matrix.



is achieved by uniform input probabilities.

 Ex. Noiseless Binary Channel: 

 Weakly Symmetric Channel
 (1) all the rows of are permutations of each other and

(2) all the column sums are equal.



is achieved by uniform input probabilities.

 Ex. Binary Symmetric Channel: [bpcu]

2log | |

 2log | | H r

[Ex. 4.27]

[4.30]

[Defn 4.36]

[4.37]where 𝐫 is any row from the 𝐐 matrix.


