Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th
4. Mutual Information and Channel Capacity

Office Hours:

Check Google Calendar on the course website.
Dr.Prapun's Office:
6th floor of Sirindhralai building, BKD

Reference for this chapter

- Elements of Information Theory
- By Thomas M. Cover and Joy A. Thomas
- 2nd Edition (Wiley)
- Chapters 2, 7, and 8
- $1^{\text {st }}$ Edition available at SIIT library: Q360 C68 1991

Recall: Entropy

4.29. Reminder:
(a) Some definitions involving entropy
(i) Binary entropy function: $h(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)$
(ii) $H(X)=-\sum_{x} p(x) \log _{2} p(x)$
(iii) $H(\underline{\mathbf{p}})=-\sum_{i} p_{i} \log _{2}\left(p_{i}\right)$
(b) A key entropy property that will be used frequently in this section is that for any random variable X,

$$
H(X) \leq \log _{2}|\mathcal{X}| \text { with equality iff } X \text { is uniform. }
$$

Recall: Entropy

- Entropy measures the amount of uncertainty (randomness) in a RV.
- Three formulas for calculating entropy:
- [Defn 2.41] Given a $\operatorname{pmf} p_{X}(x)$ of a RV X, - $\boldsymbol{H}(X) \equiv-\sum_{x} p_{X}(x) \log _{2} p_{X}(x)$. Set $0 \log _{2} 0=0$.
- [2.44] Given a probability vector $\underline{\mathbf{p}}$,
- $\boldsymbol{H}(\underline{\mathbf{p}}) \equiv-\sum_{i} p_{i} \log _{2} p_{i}$.
- [Defn 2.47] Given a number $p \in[0,1]$,
binary
entropy
- $\boldsymbol{H}(p) \equiv h_{b}(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)$

- [2.56] Operational meaning: Entropy of a random variable is the average length of its shortest description.

Recall: Entropy

- Important Bounds

$$
\underset{\text { ministic }}{0} \leq H(X) \leq \underset{\text { uniform }}{\log _{2}\left|S_{X}\right|}
$$

- The entropy of a uniform (discrete) random variable:

$$
H(X)=\log _{2}\left|S_{X}\right|
$$

- The entropy of a Bernoulli random variable:

$$
H(p) \equiv h_{b}(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)
$$

- binary entropy function

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
Information-Theoretic Quantities

ECS315 vs. ECS452

ECS315
 ECS452

We talked about randomness but we did not have a quantity that formally measures the amount of randomness.

Back then, we studied variance and standard deviation.

We talked about independence but we did not have a quantity that completely measures

We study mutual information. the amount of dependency.
Back then, we studied correlation, covariance, and uncorrelated random variables.

Recall: ECS315 2019/1

11.46. To quantify the amount of dependence between two random variables, we may calculate their mutual information. This quantity is crucial in the study of digital communications and information theory. However, in introductory probability class (and introductory communication class), it is traditionally omitted.

11.4 Linear Dependence

Definition 11.47. Given two random variables X and Y, we may calculate the following quantities: Definition 11.51. X and Y are said to be uncorrelated if and (a) Correlation: $\mathbb{E}[X Y]$. only if $\operatorname{Cov}[X, Y]=0$.
(b) Covariance: $\operatorname{Cov}[X, Y]=\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]$.
11.53. Independence implies uncorrelatedness; that is if $X \Perp Y$, then $\operatorname{Cov}[X, Y]=0$.

The converse is not true. Uncorrelatedness does not imply independence. See Example 11.54 .

Information-Theoretic Quantities

Entropy and Joint Entropy

- Entropy
- $H(X)=-\sum_{x} p(x) \log _{2} p(x)$
- Amount of randomness in X
- $H(Y)=-\sum_{y} q(y) \log _{2} q(y)$
- Amount of randomness in Y
- Joint Entropy

- $H(X, Y)=-\sum_{(x, y)} p(x, y) \log _{2} p(x, y)$
- Amount of randomness in (X, Y) pair
- In general, $H(X, Y) \neq H(X)+H(Y)$
- There might be some shared randomness between X and Y.

Conditional Entropies

Amount of randomness in $Y \quad H(Y) \equiv-\sum_{y \in \mathcal{Y}} q(y) \log _{2} \overbrace{q(y)}^{P[Y=y]} \equiv H(\underline{\mathbf{q}})$

Amount of randomness still remained in Y when we know that $X=x$. $H(Y \mid \overbrace{X=x}^{\text {given a particular value } x} \equiv H(Y \mid x) \equiv-\sum_{y \in \mathcal{Y}} Q(y \mid x) \log _{2} \overbrace{Q(y \mid x)}^{P[Y=y \mid X=x]}$ Apply the entropy calculation to a row from the \mathbf{Q} matrix
average of $H(Y \mid x)$

The average amount of randomness still remained in Y when we know X

$$
\begin{aligned}
H(Y \mid X) & \equiv \sum_{x \in \mathcal{X}} p(x) H(Y \mid x) \\
& =H(X, Y)-H(X)
\end{aligned}
$$

Diagrams [Figure 16]

Venn Diagram

Information Diagram

Diagrams [Figure 16]

Probability Diagram

Information-Theoretic Quantities

Toby Berger with Berger plaque

Raymond Yeung

－BS，MEng and PhD degrees in electrical engineering from Cornell University in 1984,1985 ，and 1988，respectively．

Prof．Yeung Wai－Ho，Raymond 楊偉豪教授
Choh－Ming Li Professor of Information Engineering（FIEEE，FHKIE）卓敏信息工程學講座教授
Co－Director，Institute of Network Coding
Education：BS，MEng，PhD（Cornell）
Research Area：Communications and Information Theory

Contact

Tel：（852）3943－8375
Fax：（852）2603－5032
Address：Rm 733，Ho Sin Hang Engineering Building，CUHK
Email：whyeung［＠］ie．cuhk．edu．hk
\triangle Website

 A First
 Course in

The first course usually is an appetizer. In the case of Raymond Yeung's A First Course in Information Theory, however, another delectable dish get served up in each of the sixteen chapters. Chapters 1 through 7 deal with the
basic concepts of entropy and information with applications to lossless source coding. This is the traditional early fare of an information theory text, but Ye ung flavors it uniquely. No one since Shannon has had a better appreciation for the mathematical structure of information quantities than Prof. Yeung. In the
early chapters this manifests itself in a careful treatment of information meaearly chapters his manifests iself in a careful treament of information mea-
sures via both Yeung's analytical theory of I-Measure and his geometrically intuitive information diagrams. (This material, never before presented in a text-) book, is rooted in works by G. D. Hu, by H. Dyckman Fundamental interrelations among information meas are developed with precision and unity. New slants are the divergence inequality, the data processing theorer There is also a clever, Kraft-inequality-free way of
length of the words in a lossless prefix source code , entropy. An easily digestible treatment of the redur source codes also is served up, an important topic in slighted in textbooks.
The concept of weakly typical sequences is introd chor Yeung's proof of the lossless block source codi of strongly typical sequences is introduced next. La
icality, this provides a foundation for proving the ch Chapter 8, the lossy source coding (rate-distortion) ti selected multi-source network coding theorems in C proof of the channel coding theorem follows standa development of the interplay between information q ness readies one's palate for a rigorous proof that fo emoryless channel does not increase its capacity

The first course usually is an appetizer. In the case of Raymond Yeung's A First Course in Information Theory, however, another delectable dish gets served up in each of the sixteen chapters. Chapters 1 through 7 deal with the basic concepts of entropy and information with applications to lossless source coding. This is the traditional early fare of an information theory text, but Yeung flavors it uniquely. No one since Shannon has had a better appreciation for the mathematical structure of information quantities than Prof. Yeung. In the early chapters this manifests itself in a careful treatment of information measures via both Yeung's analytical theory of I-Measure and his geometrically FOREWORD
hensive theory remains elusive. Non information inequalities developed i intuitive information diagrams. (This material, never before presented in a textbook, is rooted in works by G. D. Hu, by H. Dyckman, and by R. Yeung et al.) The closing chapter linking entropy tool for attacking this class of problems. The closing chapter linking entropy
to the theory of groups is mouthwateringly provocative, having the potential to become a major contribution of information theory to this renowned branch of mathematics and mathematical physics.
Savor this book; I think you will agree the proof is in the pudding

Raymond Yeung

- Introduce, for the first time in a textbook,
- analytical theory of I-Measure and
- geometrically intuitive information diagrams
- Establish a one-to-one correspondence between Shannon's information measures and set theory.
- Rooted in works by G. D. Hu, by H. Dyckman, and by R. Yeung et al.

Chapter 6
THE I-MEASURE

In Chapter 2, we have shown the relationship between Shannon's information measures for two random variables by the diagram in Figure 2.2. For convenience, Figure 2.2 is reproduced in Figure 6.1 with the random variables
X and Y replaced by X_{1} and X_{2}, respectively. This diagram suggests that X and Y replaced by X_{1} and X_{2}, respectively. This diagram suggests that set-theoretic structure.
In this chapter, we develop a theory which establishes a one-to-one correspondence between Shannon's information measures and set theory in full generality. With this correspondence, manipulations of Shannon's information measures can be viewed as set operations, thus allowing the rich suite of tools in set theory to be used in information theory. Moreover, the structure of Shannon's information measures can easily be visualized by means of an

Diagrams

$$
P(B \backslash \mathrm{~A})=P(A \cup B)-P(A)
$$

$$
H(Y \mid X)=H(X, Y)-H(X)
$$

Conditional Entropies

Amount of randomness in $Y \quad H(Y) \equiv-\sum_{y \in \mathcal{Y}} q(y) \log _{2} \overbrace{q(y)}^{P[Y}=y](\underline{\mathbf{q}})$

Amount of randomness still remained in Y when we know that $X=x$.

Apply the entropy calculation to a row from the \mathbf{Q} matrix
average of $H(Y \mid x)$

The average amount of randomness still remained in Y when we know X

$$
\begin{aligned}
H(Y \mid X) & \equiv \sum_{x \in \mathcal{X}} p(x) H(Y \mid x) \\
& =H(X, Y)-H(X) \\
& =H(Y)-I(X ; Y)
\end{aligned}
$$

Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
Information Channel Capacity

System Model for Section 3.5

Channel Capacity

[Section 4.2]
"Operational": max rate at which reliable communication is possible

Channel Capacity
Arbitrarily small error probability can be achieved.
"Information": max $I(X ; Y)$ [bpcu] [Section 4.3] \underline{p}

Shannon [1948] shows that these two quantities are actually the same.

MATLAB

```
function H = entropy2s(p)
% ENTROPY2S accepts probability mass function
% as a row vector, calculate the corresponding
% entropy in bits.
p=p(find(abs(sort(p)-1)>1e-8)); % Eliminate 1
p=p(find(abs(p)>1e-8)); % Eliminate 0
if length(p)==0
    H = 0;
else
    H = simplify(-sum(p.*log(p))/log(sym(2)));
end
```

```
function I = informations(p,Q)
X = length(p);
q = p*Q;
HY = entropy2s(q);
temp = [];
for i = 1:X
    temp = [temp entropy2s(Q(i,:))];
end
HYgX = sum(p.*temp);
I = HY-HYgX;
```


Capacity calculation for BAC

Capacity of 0.0918 bits is achieved by $\underline{p}=[0.5380,0.4620]$

Capacity calculation for BAC

$\mathbf{Q}=\left[\begin{array}{ll}0.1 & 0.9 \\ 0.4 & 0.6\end{array}\right]$

```
close all; clear all;
    >> Capacity_Ex_BAC
syms p0
p = [p0 1-p0];
Q = [1 9; 4 6]/sym(10);
I = simplify(informations(p,Q))
I = simplify(informations(p,Q))
    0.5376 0.4624
po = eval([p0o 1-p0o])
C = simplify(subs(I,p0,p0o))
eval(C)
    (log(2/5-(3*\mathbf{P0})/10)*((3*\mathbf{P}0)/10-2/5)-\operatorname{log((3*\mathbf{P}0)/10 + 3/5)*((3*\mathbf{p}0)/10+}
    3/5))/\operatorname{log}(2)+(\operatorname{log}((5*\mp@subsup{2}{}{\wedge}(3/5)*\mp@subsup{3}{}{\wedge}(2/5))/6)*(\mathbf{P0}-1))/\operatorname{log}(2)+
    (P0*log((3*\mp@subsup{3}{}{\wedge}(4/5))/10))/\operatorname{log}(2)
    >p0o =
    (27648*2^(1/3))/109565-(69984*2^(2/3))/109565 + 135164/109565
C=
    (log((3*3^(4/5))/10)*((27648*2^(1/3))/109565-(69984*2^(2/3))/109565 +
    135164/109565))/log(2) - (log((104976*2^(2/3))/547825-(41472*2^(1/3))/547825 +
16384/547825)*((104976*2^(2/3))/547825-(41472*2^(1/3))/547825 +
16384/547825)+\operatorname{log}((41472*2^(1/3))/547825-(104976*2^(2/3))/547825 +
    531441/547825)*((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 +
    531441/547825))/log(2)+(log((5*2^(3/5)*3^(2/5))/6)*((27648*2^(1/3))/109565 -
    (69984*2^(2/3))/109565 + 25599/109565))/log(2)

\section*{Same procedure applied to BSC}

```

close all; clear all;
syms p0
p = [p0 1-p0];
Q = [6 4; 4 6]/sym(10);
I = simplify(informations(p,Q))
p0o = simplify(solve(diff(I)==0))}|\begin{array}{l}{\textrm{p}0\textrm{o}}
{1/2}
po = eval([p0o 1-p0o])
0.5000 0.5000
C = simplify(subs(I,p0,p0o))
log((2*2^(2/5)*\mp@subsup{3}{}{\wedge}(3/5))/5)/log(2)
->ans=
eval(C)
0.0290

```

\title{
Computation of Channel Capacity and Rate-Distortion Functions
}

\author{
RICHARD E. BLAHUT, MEMBER, IEEE
}

\begin{abstract}
By defining mutual information as a maximum over an appropriate space, channel capacities can be defined as double maxima and rate-distortion functions as double minima. This approach yields valuable new insights regarding the computation of channel capacities and rate-distortion functions. In particular, it suggests a simple algorithm for computing channel capacity that consists of a mapping from the set of channel input probability vectors into itself such that the sequence of probability vectors generated by successive applications of the manninc ennvargae to the vantar that ashipvas the canarity of the
\end{abstract}

Arimoto [13] used the first of the preceding expressions in an investigation of \(C\), thereby obtaining Theorems 1 and 3 as well as Corollary 2 of this paper. \({ }^{1}\)
This approach places the existing theory of \(C\) and \(R(D)\) in a more transparent setting and suggests several new results. In particular, the approach in question results in algorithms for determining \(C\) and \(R(D)\) by means of map-

\title{
An Algorithm for Computing the Capacity of Arbitrary Discrete Memoryless Channels
}

\author{
SUGURU ARIMOTO
}

\begin{abstract}
A systematic and iterative method of computing the capacity of arbitrary discrete memoryless channels is presented. The algorithm is very simple and involves only logarithms and exponentials in addition to elementary arithmetical operations. It has also the property of monotonic convergence to the capacity. In general, the approximation error is at least inversely proportional to the number of iterations; in certain
\end{abstract}

Manuscript received September 9, 1970.
The author is with the Faculty of Engineering Science, Osaka University, Osaka, Japan.
circumstances, it is exponentially decreasing. Finally, a few inequalities that give upper and lower bounds on the capacity are derived.

\section*{I. Introduction}

IT IS well known that the capacity of discrete memoryless channels that are symmetric from the input can easily be evaluated. Muroga [1] developed a method for straightforward evaluation of capacity, but unfortunately its usefulness is restricted to the case where 1) the channel

\section*{Blahut-Arimoto algorithm [4.26]}
```

function [ps C] = capacity_blahut(Q)
% Input: Q = channel transition probability matrix
% Output: C = channel capacity
% ps = row vector containing pmf that achieves capacity
tl = 1e-8; % tolerance (for the stopping condition)
n = 1000; % max number of iterations (in case the stopping condition
% is "never" reached")
nx = size(Q,1); pT = ones(1,nx)/nx; % First, guess uniform X.
for k = 1:n
qT = pT*Q;
% Eliminate the case with 0
% Column-division by qT
temp = Q.*(ones(nx,1)*(1./qT));
%Eliminate the case of 0/0
l2 = log2(temp);
l2(find(isnan(l2) | (l2==-inf) | (l2==inf)))=0;
logc = (sum(Q.*(l2),2))';
CT = 2.^(logc);
A = log2(sum(pT.*CT)); B = log2(max(CT));
if((B-A)<tl)
break
end
% For the next loop

- MATLAB: capacity_blahut.m
pT = pT.*CT; % un-normalized
pT = pT/sum(pT); % normalized
 - Chanter 5- Channel Codina
if(k == n)
fprintf('\nNot converge within n loops\n')
end
end
ps = pT;
C = (A+B)/2;

```
- Chapter 4: Mutual Information and Chan
- MATLAB: capacity_blahut.m
- Chanter 5- Channel Codina

\section*{Capacity calculation for BAC: a revisit}

```

close all; clear all;
Q = [1 9; 4 6]/10;
0.5376 0.4624
[ps C] = capacity_blahut(Q)
>> Capacity_Ex_BAC_blahut
0.0918

```

Toby Berger with Berger plaque


\section*{Richard Blahut}
- Former chair of the Electrical and Computer Engineering Department at the University of Illinois at Urbana-Champaign
- Best known for Blahut-Arimoto algorithm
(Iterative
Calculation of C)

Modem Theory
An introduction to Telecommunications


\section*{Claude E. Shannon Award}

Claude E. Shannon (1972)
David S. Slepian (1974)
Robert M. Fano (1976)
Peter Elias (1977)
Mark S. Pinsker (1978)
Jacob Wolfowitz (1979)
W. Wesley Peterson (1981)

Irving S. Reed (1982)
Robert G. Gallager (1983)
Solomon W. Golomb (1985)
William L. Root (1986)
James L. Massey (1988)
Thomas M. Cover (1990)
Andrew J. Viterbi (1991)

Elwyn R. Berlekamp (1993)
Aaron D. Wyner (1994)
G. David Forney, Jr. (1995)

Imre Csiszár (1996)
Jacob Ziv (1997)
Neil J. A. Sloane (1998)
Tadao Kasami (1999)
Thomas Kailath (2000)
Jack Keil Wolf (2001)
Toby Berger (2002)
Lloyd R. Welch (2003)
Robert J. McEliece (2004)
Richard Blahut (2005)
Rudolf Ahlswede (2006)

Sergio Verdu (2007)
Robert M. Gray (2008)
Jorma Rissanen (2009)
Te Sun Han (2010)
Shlomo Shamai (Shitz) (2011)
Abbas El Gamal (2012)
Katalin Marton (2013)
János Körner (2014)
Arthur Robert Calderbank (2015)
Alexander S. Holevo (2016)
David Tse (2017)
Gottfried Ungerboeck (2018)
Erdal Arıkan (2019)
Charles Bennett (2020)

\title{
Digital Communication Systems ECS 452
}

\section*{Asst. Prof. Dr. Prapun Suksompong}
prapun@siit.tu.ac.th
Special Cases for Calculation of Channel Capacity

\section*{Calculating channel capacity}
1. Use (multi-variable) calculus
- standard nonlinear optimization techniques
2. Use Blahut-Arimoto algorithm (MATLAB)
3. Check whether we can match the \(\mathbf{Q}\) matrix with any known special cases.

Remark: Do not assume that the input probabilities will have to be uniform to obtain \(C\).
- See BAC in Ex. 4.25.

\section*{Channel Capacity: Special Cases}
- Channel with Nonoverlapping Outputs ( \(\mathrm{NO}^{2}\) )
- There is only one non-zero element in each column of its \(\mathbf{Q}\) matrix.
\(C=\log _{2}|\mathcal{X}|\)
is achieved by uniform input probabilities.
- Ex. Noiseless Binary Channel: \(C=1\) [bpcu]
- Weakly Symmetric Channel
- (1) all the rows of \(\mathbf{Q}\) are permutations of each other and
(2) all the column sums are equal.
\(C=\log _{2}|\mathcal{Y}|-H(\underline{\mathbf{r}})\) where \(\underline{\mathbf{r}}\) is any row from the \(\mathbf{Q}\) matrix.
is achieved by uniform input probabilities.
- Ex. Binary Symmetric Channel: \(C=1-H(p)\) [bpcu]```

